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ABSTRACT

Understanding and organizing data, in particular understanding the key modes of variation in the data, is a first
step toward exploiting and evaluating sensor phenomenology. Spectral theory and manifold learning methods
have been recently shown to offer sever powerful tools for many parts of the exploitation problem. We will
describe the method of diffusion maps and give some examples with radar (backhoe data dome) data. The so-
called diffusion coordinates are kernel based dimensionality reduction techniques that can, for example, organize
random data and yield explicit insight into the type and relative importance of the data variation. We will
provide sufficient background for others to adopt these tools and apply them to other aspects of exploitation and
evaluation.
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1. INTRODUCTION

We wish to explore the implementation of a dimension reduction algorithm which utilizes spectral graph theory,
i.e. the “diffusion map” approach.1 We use this approach to explore the manifold geometry of a diffusion
coordinate representation of radar data. Our assumption is that the data set satisfies the “manifold model”,
i.e. the data set can be represented as points on a manifold in Euclidean space. Data collected by sensors
often have a high-dimensional representation but may in fact be the result of a low-dimensional phenomenon.
Furthermore, data collected by sensors often reflect the distribution of the information sampling process. We
seek a representation of the data that is invariant to the sampling distribution. The procedure discussed here
can be shown2 to represent the data independently of the sampling distribution. While diffusion maps have been
used for various applications,3 to the best of our knowledge radar data has not been analyzed via diffusion maps.
We wish to determine if diffusion maps are a viable strategy for use in radar, i.e. will radar data represented
by diffusion coordinates have some type of geometry? Furthermore, what role will polarization play in this
representation? We explore these issues.

In the course of implementing the algorithm we will explore various choices for certain parameters that
occur in the algorithm. One of the fundamental assumptions of the spectral graph theory approach is that
the pertinent information occurs locally. However, this notion of “local information” needs to be clarified with
respect to parameter values. We specifically look at the space of distances between the data points and use
different descriptive statistics of this space to guide our choice of parameter values. The paper is organized
as follows. In Section 2 we explicitly discuss the diffusion map algorithm. The full algorithm is presented in
Algorithm 1. In Section 3 we perform numerical experiments on SAR Backhoe Data Dome Version 1.0.4 In
Section 3.1 we represent range histories as diffusion coordinates and in Section 3.2 we consider the squiggle path
data. In Section 4 we discuss the results of our experiments.
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2. THE METHOD OF DIFFUSION MAPS

In this section we discuss the method of representing a given data set X = {x1, x2, . . . , xN} in terms of diffusion
coordinates. The basis of this approach is in graph theory and we will accordingly first begin by discussing some
basic notions of graph theory.

A graph is defined as a set of vertices V and a set of edges E. In what is to follow we will only consider
finite graphs, i.e. the set of vertices V = {v1, v2, . . . , vn} is finite. The set of edges E is a subset of the set of
all unordered pairs of points of V . Any pair of points (vi, vj) ∈ E are said to be adjacent vertices of the graph
G = (V,E). A weighted graph is a graph with an associated weight function w : V × V → R. Furthermore the
weight function is required to satisfy the following conditions:

(a) Symmetry: w(vi, vj) = w(vj , vi) for any vi, vj ∈ V .

(b) Non-negativity: w(vi, vj) ≥ 0 for any vi, vj ∈ V .

The degree of the vertex vi, denoted by dvi
is defined to be

dvi
=

∑

vj∈V

w(vi, vj).

Define the n × n matrix T to be the diagonal matrix with (T )ii = dvi
and define the n × n matrix L such that

(L)ij = L(vi, vj) =

⎧
⎨

⎩

dvi
− w(vi, vi) if vi = vj ,

−w(vi, vj) if vi and vj are adjacent,
0 otherwise.

then the Laplacian of the graph G is defined to be

L = T−1/2LT−1/2

where (T−1)ii ≡ 0 if dvi
= 0. Defining the transition probability P (vi, vj) as

P (vi, vj) =
w(vi, vj)

dvi

for any vi, vj ∈ V ,

determines a random walk on the weighted graph. The random walk has probability P (vi, vj) of moving from vi

to vj . Using the transition probability we can construct an n×n matrix of transition, P, where (P)ij = P (vi, vj).
The eigenvectors and eigenvalues of P have been used for dimension reduction.5 In the case of unweighted graphs
we have6 that P = T−1/2(I−L)T 1/2. We refer the reader to Chung6 and Bollobás7 for a more detailed discussion
of graph theory.

For our purposes, the data set X = {x1, x2, . . . , xN} is considered to be the set of vertices of a weighted
graph with weight w(·, ·). The goal is to represent each xi ∈ R

d as a point yi ∈ R
m where m � d but so that

the set Y = {y1, y2, . . . , yN} still retains all the intrinsic geometric information of the original data set.

Assuming the “manifold model”, i.e. assuming that the original data set is in fact intrinsically low-dimensional
and assuming that the points lie on a submanifold M of R

d; Belkin and Niyogi5 show that the eigenmaps of
the Laplace Beltrami operator are, in some sense, a “good” choice to use for the embedding of the original data
set. The geometry of the manifold is taken into account by using the Laplace Beltrami operator. In particular,
the local information is well preserved through the use of these eigenmaps and furthermore there is an intrinsic
connection between the Laplacian of a graph and the Laplace Beltrami operator, ∆, on manifolds. The Laplace
Beltrami operator can be approximated in the discrete setting by the Laplacian of an appropriately weighted
graph. The connection between the Laplace Beltrami operator on differentiable functions on a manifold and heat
flow lead us to the heat kernel as a choice for an appropriate weight function. Belkin and Niyogi5 approximate
the heat kernel by the Gaussian weight wε(xi, xj) = exp(−‖xi − xj‖2/ε) where ‖ · ‖ is the standard Euclidean
metric and ε is a scale parameter. See Belkin and Niyogi5 for a detailed discussion of Laplacian eigenmaps.
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Coifmann, Keller and Lafon2 show that using the Gaussian weight yields a representation of the data that
is strongly correlated to the sampling distribution of the data points. A strategy for finding a distribution-
independent representation is provided in Lafon.1 The strategy is to normalize the Gaussian weight function wε.
The normalized weight function w̃ε is defined as

w̃ε(xi, xj) =
wε(xi, xj)

qε(xi)qε(xj)
,

where
qε(xi) =

∑

xk∈X

wε(xi, xk).

We present the complete algorithm in Algorithm 1 (adapted from the algorithm presented by Lafon1). The
normalization of the weight function is performed in steps 2 and 3, then the matrix of transition is created in
steps 4 and 5. Finally, in steps 6 and 7, the eigenvectors and eigenvalues of the Laplace Beltrami operator are
approximated.

Algorithm 1: Diffusion Map Algorithm

Input: X = {x1, x2, . . . , xN} ⊂ R
d, ε, t,m

Output: Y = {y1, y2, . . . , yN} ⊂ R
m

1. Construct the matrix Wε with entries (Wε)ij = exp(−‖xi − xj‖2/ε).
2. Let q = Wε ∗ 1 where 1 = (1, 1, . . . , 1)′.
3. Define W̃ε = Wε./(q ∗ q′).
4. Let d = sqrt(W̃ε ∗ 1).
5. Define P = W̃ε./(d ∗ d′).
6. Diagonalize P by [U,S,V] = svd(P).
7. The eigenvalues of ∆ are approximated by the diagonal entries of S and the eigenfunctions φj are
approximated by U(:, j)./U(:, 1).
8. The diffusion map is defined as xi → yi = (λt/2

2 φ2(i), λ
t/2
3 φ3(i), . . . , λ

t/2
m φm(i))′ where φj(i) is the i-th

component of the j-th eigenvector φj and λj = sjj .
NOTE: We are using MATLAB notation; “./” and “sqrt” denote element-wise operations and “svd”

indicates we have performed a singular value decomposition.

Let us now formally define a diffusion map. Let (X,X , µ) be a measure space, where X is the set of finitely
many data points, and µ is the counting measure. Let W be defined as the diffusion operator with kernel w̃ε,
i.e. for any f ∈ L2(X, dµ)

Wf(x) ≡
∫

X

w̃ε(x, y)f(y)dµ(y).

Then since W is self-adjoint and assuming W is bounded and compact, by Mercer’s Theorem8 we have

w̃ε(x, y) =
∑

j≥0

λjφj(x)φj(y)

where
Wφj(x) = λjφj(x).

One can show that the eigenvalues are non-negative and furthermore

λ0 = 1 ≥ λ1 ≥ λ2 ≥ . . . .

We can now implicitly define the family of diffusion distances {Dt}t≥1 by

D2
t (x, y) =

∑

j≥0

λt
j(φj(x) − φj(y))2 (1)
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where the scale parameter t controls the sensitivity of the diffusion metric Dt to the eigenvalues φj , i.e. since
0 ≤ λj ≤ 1, a large value of t will cause the spectrum to decay rapidly thereby causing Dt to be largely dependent
on only a few eigenvectors φj . The framework discussed above can be viewed from the point of view of diffusion
processes. According to Coifman et. al,9 Dt(x, y) “measures the rate of connectivity of the points x and y by
paths of length...” t and “unlike the geodesic distance, this metric is robust to perturbations on the data.”

Finally, let us define the family of diffusion maps {Φt}t≥1 by

x → Φt(x) = (λt/2
0 φ0(x), λt/2

1 φ1(x), λt/2
2 φ2(x), . . . )′ (2)

but note that it can be shown that φ0 is a constant and so in practice the diffusion map used is

x → (λt/2
1 φ1(x), λt/2

2 φ2(x), . . . , λt/2
m(t)φm(t)(x))′

where m(t) is that number for which the eigenvalues {λt/2
j }j>m(t) are numerically insignificant. Note that in

light of equation (2), the diffusion distance (1) can be defined as

Dt(x, y) = ‖Φt(x) − Φt(y)‖ (3)

where ‖ · ‖ is the standard Euclidean norm. We refer the interested reader to Lafon1 for a detailed construction
of the diffusion map. Note that the second eigenvector φ1 is known as the Fiedler vector (see Lévy10) and can
be used to order the underlying data set X (see Higgs, Solka and Weller11 for example). Also, the terms ε, t, and
m(t) are all parameters of Algorithm 1. In Section 3 and 4 some strategies for selecting the parameter ε will be
discussed. In the next section we apply this diffusion map approach to the Backhoe Data Dome.

3. NUMERICAL EXPERIMENTS

In this section we wish to provide some numerical experiments of the dimension reduction strategy outlined in
Algorithm 1. The goal of this section is to highlight the implementation of the algorithm to radar data and to
experiment with the parameter ε. The Backhoe Data Dome is simulated wideband (7−13 Ghz), full polarization,
complex backscatter data from a backhoe vehicle. The data is public release #ASC 04–0273 and is available
from the AFRL/SNA Sensor Data Management System. The k-space data for each square degree is given for
66◦ < azimuth < 114◦ and 18◦ < elevation < 42◦. For each square degree the data is a 3 dimensional complex
array of size 512 × 14 × 14 where the first dimension is the frequency range history evenly spaced between 7
and 13 GHz and the second and third dimensions are Elevation and Azimuth respectively. The data set in both
our experiments is a collection of range histories over some range of (az, el) pairs, i.e. if X = {x1, x2, . . . , xN}
is the data set, then each xi is a range history represented as a vector in C

512. For both experiments we use
the Gaussian kernel wε(xi, xj) = exp(−‖xi − xj‖2

L2/ε) and we consider different choices of ε. We use t = 2 and
we use (λ2φ2, λ3φ3, λ4φ4) as our embedding. For our choice of ε we employ several different strategies but in
all cases we wish to pick ε so that the data points are numerically connected, i.e. we pick ε such that for each
i ∈ {1, 2, . . . , N} there exists at least one j ∈ {1, 2, . . . , N}, j 
= i, such that wε(xi, xj) 
= 0. Accordingly, we
consider the set

{‖xi − xj‖2
L2

∣∣i, j = 1, 2, . . . , N}
and use certain statistics of this set or of subsets of this set as our choice of values for ε. Lafon1 suggests

ε =
1
N

N∑

i=1

min{‖xi − xj‖2
L2

∣∣‖xi − xj‖L2 > 0, j = 1, 2, . . . , N}, (4)

while Higgs, Solka and Weller11 use

ε = min{‖xi − xj‖2
L2

∣∣‖xi − xj‖L2 > 0, i, j = 1, 2, . . . , N}. (5)
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3.1. Radar Data

We wish to represent radar data using diffusion maps. In Figures 1–6 we consider the k-space data for 88◦ ≤
az < 92◦ and 28◦ ≤ el < 32◦ where only the vertical polarization data is used. Then with the Gaussian kernel
and the procedure outlined in Algorithm 1, we embed the range history by diffusion coordinates. In Figure 3
and 4 we use color to correspond the geo-spatial location of the data collected to points on the manifold. In all
the other figures of manifolds that appear, the horizontal polarization data is plotted as a darker shaded point
while the vertical polarization data is plotted as a lighter shaded point. In Figure 1 we use

ε =
1
N

N∑

i=1

max{‖xi − xj‖2
L2

∣∣j = 1, 2, . . . , N}, (6)

and in Figure 2 we graph the projection of the manifold in two dimensions. In Figure 5 we use

ε = max
{

min{‖xi − xj‖2
L2

∣∣‖xi − xj‖L2 > 0, j = 1, 2, . . . , N}
∣∣∣i = 1, 2, . . . , N

}
, (7)

with t = 2. In Figure 6 we use (4) with t = 2.

In Figure 8–10 we consider all the k-space data measurements for 106◦ ≤ az < 109◦ and 18◦ ≤ el < 21◦ where
both the horizontal and vertical polarization data is used. In Figure 7 we graph the spectrum decay associated
to diffusion coordinates for both data sets respectively. In Figure 8 we use (6) with t = 2. In Figure 8 on the left
we plot the vertical polarization data separately. In Figures 9 we use (4) with t = 2. In Figure 10 we use (5) and
t = 2. Notice in Figure 10 we see that the vertical and horizontal polarization data account for distinct portions
of the diffusion embedding. In Figure 11 graph the manifold that results if we consider the VV data only for
106◦ ≤ az < 109◦ and 18◦ ≤ el < 21◦ for ε = 205 thousand. In Figure 11, on the left, we graph the portion of
the diffusion coordinates of the embeding seen in Figure 10 due to VV polarization data. On the right we graph
the embedding that results if we restrict our initial data set to the VV polarization data only.
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Figure 8. Left: Embedding that results when we use ε ≈ 3.4 million. Right: Portion of embedding due to VV polarization.
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Figure 10. The diffusion embedding that results when we use ε ≈ 205 thousand.
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3.2. Squiggle Path Data

Now we consider a manifold representation of the squiggle path. The (az, el) pairs of a randomly generated
path are also available on the Backhoe Data Dome, Version 1.0. Interpolation is not needed since the (az, el)
coordinates of the path coincide with the given (az, el) pairs. The original squiggle path consists of 3082 points
however we use the horizontal and vertical polarization data of the first 1500 points (see the right side of
Figure 15.) Thus our data set in this section contains 3000 points that correspond to the vertical and horizontal
polarization range histories of each point on the squiggle path. Using Algorithm 1 we represent the squiggle
path in terms of diffusion coordinates. As before, we plot the vertical polarization data as darker shaded point
and the horizontal polarization data as a lighter shaded point. In Figures 12 and 13 we use (7) with t = 2. In
Figure 14 on the left we see the manifold that results if we use

ε =
1
k

N∑

i,j=1

‖xi − xj‖2
L2 , (8)

where k is the cardinality of the set {‖xi − xj‖L2

∣∣‖xi − xj‖L2 > 0, i, j = 1, 2, . . . , N}. In Figure 14 on the right
we see the manifold that results when we use (5) with t = 2. In Figure 15, on the left, we graph the spectrum
decay associated to the diffusion coordinates for ε = 28 million.
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Figure 12. Left: The diffusion embedding that results when we use ε ≈ 28 million. Right: Projection of the diffusion
embedding in two dimensions.
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Figure 13. Left: Portion of diffusion embedding due to VV polarization. Right: Portion of diffusion embedding due to
HH polarization.
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Figure 14. Left: Squiggle path diffusion embedding, ε ≈ 9.1 million. Right: The diffusion embedding that results when
we use ε ≈ 217 thousand.
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Figure 15. Left: Spectrum decay for diffusion coordinates when ε ≈ 28 million. Right: The geo-spatial plot of the
squiggle path used here.
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4. CONCLUSIONS

From the numerical experiments conducted we can conclude that there are certain “threshold” values for the
parameter ε which drastically affect the shape and topological properties of the manifold. For example compare
Figures 1, 5 and 6. The distinct embeddings are directly due to the ε value. When ε is large, close data points
(with respect to the distance metric on the data set) will be identified with each other. As ε decreases there will
be more distinction between close data points. Finding the appropriate ε may be dependent upon how much
local information is needed. Alternately, Perona and Zelnik-Manor12 propose the notion of “local scaling”, i.e.
they sugest the following weight function,

w(xi, xj) = exp(−d2(xi, xj)/εiεj)

where d(·, ·) is some distance metric and εi = d(xi, xK) for some fixed K ∈ {1, 2, . . . , N}. Taking this idea
further, we suggest

εi = min{‖xi − xj‖L2

∣∣‖xi − xj‖L2 > 0, j = 1, 2, . . . , N} (9)

in the hope that we can construct the manifold in a local, piecewise fashion. For example, the resulting diffusion
embedding of VV data for 88◦ ≤ az < 92◦ and 28◦ ≤ el < 32◦ when we use (9) is shown in Figure 16. The colors
that appear in Figure 16 are in reference to the geo-spatial color scheme that appears in Figure 3 on the left.
Further experiments utilizing local scaling would be the topic of future research.
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Figure 16. The diffusion embedding that results when we use a local scaling ε. Colors refer to Figure 3.

Note that from our results in Section 3 we see that our sampling of the Backhoe Data Dome seems to
have some structure in diffusion coordinates. This is especially evident in Figures 1 and 2. However, we have
not determined the reason for this apparent structure in the data and exploiting and exploring this structural
information would be the topic of future work. The squiggle path data also seems to have some type of geometric
structure in diffusion coordinates as can be seen in Figures 12. However, the relevance of this geometric structure
to our analysis of the squiggle path data is key work that is the topic of future research. Also note that the
vertical and horizontal polarization data play a key and distinct role in the embedding of data by diffusion
coordinates as evidenced by Figures 8, 10 and 13. Again the exact relevance of the apparent structure in the
diffusion embeddings of the vertical and horizontal polarization data need to be studied further. Note that
we have not used any cross polarization data in our experiments. The effect of cross polarization data on the
geometry of the manifold remains to be seen. In Figures 3 and 4 we clearly see that the geo-spatial location of
the data is reflected in the structure of the resulting diffusion embedding. However, the relevance of the physical
location to the manifold structure remains to be determined. In Figures 7 and 15(left) we see that the decay of
the eigenvalues is quite rapid and numerically we require much less than 512 components to adequately capture
the diffusion embedding of radar data. Note that in our experiments we have used t = 2 however increasing this
value will cause the spectrum to decay at an even greater rate.
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In general, the choice of weight function should be chosen to suit the intended application. Here, we approxi-
mate the heat kernel with the Gaussian and use a discrete L2 metric. However, there may exist more appropriate
approximations and metrics that may be used for radar data.

One can argue that the diffusion coordinate representation has organized the data with some type of geometry.
Perhaps this geometry can be used to perform general ATR applications. However, at this point the key work lies
in determining the relevance and connection between the underlying range histories and the apparent structure
displayed by the data in diffusion coordinates.
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10. B. Lévy, “Laplace-Beltrami Eigenfunctions: Towards an algorithm that ‘understands’ geometry”, appears
in IEEE International Conference on Shape Modeling and Applications 2006, Matsushima, Japan, p. 13,
2006.

11. B. W. Higgs, J. L. Solka, J. Weller, “Spectral embedding finds meaningful (relevant) structure in image and
microarray data”, BMC Bioinformatics, vol. 7, p. 74, 2006.

12. P. Perona and L. Zelnik-Manor, “Self-Tuning Spectral Clustering”, Advances in Neural Information Pro-
cessing Systems 17 (NIPS’04), Lawrence K. Saul, Yair Weiss, Léon Bottou, Eds., MIT Press, Cambridge,
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