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Summary. We study a nonlinear elliptic boundary value problem arising from elec-
trochemistry. The boundary value problems occurs in the study of heterogeneous
electrode surfaces. The boundary condition is of an exponential type and is nor-
mally associated with the names of Butler and Volmer and the notions of galvanic
corrosion. We examine the questions of existence and uniqueness of solutions to this
boundary value problem. We then treat the problem from the point of view of ho-
mogenization theory. The boundary condition has a periodic structure. We find a
limiting or effective problem as the period approaches zero, along with a correction
term and convergence estimates. We also do numerical experiments to investigate
the behaviour of galvanic currents near the boundary as the period approaches zero.
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1 Introduction

Galvanic corrosion is a phenomenon caused by electrochemical interaction
between different parts of the same surface. We study this phenomenon. A
galvanic interaction occurs when galvanic current flows either between an
electrode surface and a counterelectrode or between different parts of the same
heterogeneous surface. In Figure 1(a) the silver strip is cathodic, and reduction
takes place (Ag gains electrons.) Simultaneously oxidation takes place at the
zinc strip, zinc loses electrons, and is said to be anodic. Zinc dissolves into the
solution, the zinc electrode is being corroded and the electron flow is known
as galvanic current.
In Figure 1(b), a similar oxidation-reduction reaction is taking place between
different parts of the same surface. Here, in this paper, we consider a cylindri-
cally shaped domain, and model the oxidation-reduction reaction occurring
between different parts of our heterogeneous surface, i.e. the two dimensional
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Fig. 1. (a) Zinc loses electrons to Silver, (b) A similar reaction occurs between
different parts of the same surface

base of our cylindrically shaped domain Ω. The base, which we will refer to as
Γ , contains a periodically regular arrangement of anodic islands in a cathodic
plane. All the anodes are the same uniform material. The cathodic plane is
also uniform in material (see Figure 2.)

Fig. 2. The base of the cylinder is a heterogeneous surface.

The electrolytic voltage potential, φ satisfies the following nonlinear elliptic
boundary value problem,

∆φ = 0 in Ω

−∂φ
∂n

= JA[eαaa(φ−VA) − e−αac(φ−VA)] on ∂ΩA

−∂φ
∂n

= JC [eαca(φ−VC) − e−αcc(φ−VC)] on ∂ΩC

−∂φ
∂n

= 0 on ∂Ω \ {∂ΩA ∪ ∂ΩC}

The boundary condition is called the Butler-Volmer exponential boundary
condition, where:

αaa, αac =anodic transfer coefficients, αaa + αac = 1
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αca, αcc =cathodic transfer coeff., αca + αcc = 1

JA, JC =anodic/cathodic polarization parameters

VA, VC =anodic/cathodic rest potential

∇φ =galvanic current

In the electrochemistry community, Morris and Smyrl [MS88] have tried nu-
merically to simulate the behaviour of corrosion current for fixed ratios of
anodic to cathodic areas(3-D model). Morris and Smyrl concluded that cor-
rosion current is determined by the ratio of anodic area to active perimeter.
They claim current increases with active perimeter.

Fig. 3. Area remains constant as perimeter increases.

As a special case of increasing perimeter with fixed anodic area, we consider
a periodic structure with period going to zero. Mathematically we study,

∆uε = 0 in Ω

−∂uε
∂n

= f(x/ε, uε) on Γ

−∂uε
∂n

= 0 on ∂Ω \ Γ

where f(y, v) = λ(y)[eα(y)(v−V (y)) − e−(1−α(y))(v−V (y))] for any v ∈ < and
y ∈ Y = [0, 1] × [0, 1]. Here λ, α, and V are smooth real Y -periodic func-
tions, we also assume there exist constants λ0, Λ0, α0, A0 and V0 such that
0 < λ0 ≤ λ(y) ≤ Λ0 and 0 < α0 ≤ α(y) ≤ A0 < 1 and |V (y)| ≤ V0.
Recall Ω is a bounded cylindrical domain in <3. Here letting ε→ 0 represents
increasing perimeter with fixed anodic area.

2 The Method of Homogenization

Engineering and scientific problems often deal with materials formed from
multiple constituents(e.g. composite materials, fluid filled porous solids.) We
try to find simpler equations that smooth out whatever substructure variations
that arise with the spatially heterogeneous material. Beginning with a problem
that includes the structural variations we derive a simpler problem that serves
as a first term approximation. Here we begin by first assuming the solution
φε has an asymptotic expansion of the form,
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Fig. 4. Example of 2D rescaling when ε = 1/10.

φε ∼ φ0 + εφ(1)
ε + ε2φ(2)

ε + · · ·
The general procedure is to substitute the above expansion back into the origi-
nal boundary value problem to determine associated boundary value problems

for φ0, φ
(1)
ε , φ

(2)
ε , . . . . In this case we claim φ0 satisfies,

∆φ0 = 0 in Ω

−∂φ0

∂n
= f0(φ0) on Γ

−∂φ0

∂n
= 0 on ∂Ω \ Γ

where f0(v) =
∫

Y
f(y, v)dy, for any v ∈ < and φ

(1)
ε satisfies,

∆φ(1)
ε = 0 in Ω

−∂φ
(1)
ε

∂n
= (f(x/ε, φ0)− f0(φ0))/ε+ eε on Γ

−∂φ
(1)
ε

∂n
= 0 on ∂Ω \ Γ

∫

Ω

φ(1)
ε = 0

where, eε = 1
ε

∫

Γ
(f0(φ0) − f(x/ε, φ0)). Note that it is not a priori obvious

that these are the appropriate boundary conditions. Subsequent convergence
estimates will show that these are the right choices for boundary functions.
To whit we can show(proof omitted) that there exist constants C1, C2, C3, C4

independent of ε such that:

‖φε − φ0 − εφ(1)
ε ‖H1(Ω) ≤ C1ε

‖φε − φ0‖H1(Ω) ≤ C2
√
ε

‖φε − φ0‖L2(Ω) ≤ C3ε

‖φ(1)
ε ‖L2(Γ ) ≤ C4
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3 Existence and Uniqueness

Consider the problem,

∆uε = 0 in Ω

−∂uε
∂v

= f(x/ε, uε) on Γ (1)

−∂uε
∂v

= 0 on ∂Ω \ Γ

where f(y, v) = λ(y)[eα(y)(v−V (y)) − e−(1−α(y))(v−V (y))]. We consider the 3-
D problem, i.e. let Ω ⊂ <3, Γ ⊂ <2. Here Y = [0, 1]2 and λ, α, and V are
piecewise smooth real valued Y -periodic functions, we also assume there exist
constants λ0, Λ0, α0, A0 and V0 such that 0 < λ0 ≤ λ(y) ≤ Λ0 and 0 < α0 ≤
α(y) ≤ A0 < 1 and |V (y)| ≤ V0. We show that the energy minimization forms
of the problem (1 ) have unique solutions in H1(Ω). For a given ε, define the
following energy functional,

Eε(v) =
1

2

∫

Ω

|∇v|2dx̃+

∫

Γ

F (x/ε, v)dx

where,

F (y, v) =
λ(y)

α(y)
eα(y)(v−V (y)) +

λ(y)

1− α(y)
e−(1−α(y))(v−V (y)).

Theorem 1 (Existence and Uniqueness of the Minimizer). There ex-
ists one function uε ∈ H1(Ω) solving Eε(uε) = minu∈H1(Ω)Eε(u).

Proof: Note that

∂2

∂v2
F (y, v) = λ(y)α(y)eα(y)(v−V (y)) + λ(y)(1− α(y))e−(1−α(y))(v−V (y)),

since λ > 0, α > 0, and 1 − α > 0 we have that ∂2

∂v2F > 0. It is easy to see
that the partial derivative is bounded below. That is, there exists a constant
c0, independent of y and v such that,

∂2

∂v2
F (y, v) ≥ c0 > 0.

Since F is smooth in the second variable, for any v, w ∈ H1(Ω) and for any
y, there exists some ξ between v + w and v − w such that

F (y, v + w) + F (y, v − w)− 2F (y, v) =
∂2

∂v2
F (y, ξ)w2

which from the lower bound yields
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F (x/ε, v + w) + F (x/ε, v − w)− 2F (x/ε, v) ≥ c0w2

whence

Eε(v + w) + Eε(v − w)− 2Eε(v) ≥
∫

Ω

|∇w|2dx̃+ c0

∫

Γ

w2dx

≥ c̃0‖w‖2H1(Ω) (2)

where the last inequality follows by a variant of Poincare. Now let {unε }∞n=1

be a minimizing sequence, that is

Eε(u
n
ε )→ inf

u∈H1(Ω)
Eε(u) as n→∞.

note that clearly infu∈H1(Ω)Eε(u) > −∞. Let

v =
unε + umε

2

and

w =
unε − umε

2

then note that v + w = unε and v − w = umε and so

Eε(v + w) + Eε(v − w)− 2Eε(v) ≥
c̃0
4
‖unε − umε ‖2H1(Ω)

which implies,

Eε(u
n
ε ) + Eε(u

m
ε )− 2 inf

v∈H1(Ω)
Eε(v) ≥

c̃0
4
‖unε − umε ‖2H1(Ω).

Now if we let m,n → ∞, we see that {unε }n is a Cauchy sequence in the
Hilbert Space H1(Ω). Define uε to be its limit in H1(Ω). Then we have

unε → uε in H1(Ω)

which by the Trace Theorem implies,

unε → uε in L2(Γ )

which implies (Rudin [Rud66],p.68) there exists a subsequence {unkε }k, such
that

ukε → uε a.e. in Γ.

So now we claim

F (x/ε, uε) = lim inf
k→∞

F (x/ε, ukε ) a.e.. (3)

Since F is smooth in the second variable, and ukε → uε a.e. in Γ we have that
F (xε , uε) = limk→∞ F (xε , u

k
ε ) a.e which clearly implies (3). Now note that
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clearly F (xε , u
k
ε ) > 0 ∀k, k = 1, 2, . . .. So that by Fatou’s Lemma(Rudin [Rud66],

p.23) we can claim,
∫

Γ

F (x/ε, uε)dx ≤ lim inf
k→∞

∫

Γ

F (x/ε, ukε )dx

Thus we can conclude from this and the fact the the first term of Eε is weakly
lower semicontinuous that,

Eε(uε) ≤ lim inf
k→∞

Eε(u
k
ε )

(

= lim
k→∞

Eε(u
k
ε ) = inf

u∈H1(Ω)
Eε(u)

)

that is Eε(uε) = infu∈H1(Ω)Eε(u). So we have shown the existence of a mini-
mizer. The uniqueness of the minimizer follows trivially from (2).

Suppose uε and uδ are both minimizers of the energy functional, i.e.
Eε(uε) = infu∈H1(Ω)Eε(u) = Eε(uδ). Now if we let v = uε+uδ

2 and w = uε−uδ
2

then v + w = uε and v − w = uδ. Then substituting v and w into (2) yields,

Eε(uε) + Eε(uδ)− 2Eε(
uε + uδ

2
) ≥ c̃0

4
‖uε − uδ‖2H1(Ω)

but since uε+uδ
2 ∈ H1(Ω) we have infu∈H1(Ω)Eε(u) ≤ Eε(uε+uδ2 ) whence,

c̃0
4
‖uε − uδ‖2H1(Ω) ≤ Eε(uε) + Eε(uδ)− 2 inf

u∈H1(Ω)
Eε(u) = 0.

So uε = uδ a.e. in H1(Ω). Thus we have shown the uniqueness of the mini-
mizer. ut
Note that this argument can be generalized to address the n-dimensional
problem, i.e. the case in which we have Ω ⊂ <n, Γ ⊂ <n−1 with boundary
period cell Y = [0, 1]n−1.

4 Numerical Experiments

Finally we wish to numerically observe the behaviour of the homogenized
boundary value problems as a way to describe the behaviour of the current
near the boundary. We plan to use a finite element method approach to the
2-D problem. For the 2-D problem the domain Ω is a unit square and the
boundary Γ is the left side of the unit square, that is Γ = {(x1, x2) : x1 = 1}.
In this case we impose a grid of points(called nodes) on the unit square and
triangulate the domain, then introduce a finite set of piecewise continuous
basis functions. Now we wish to minimize the energy functional with respect
to these basis functions. In particular we assume that the minimizer can be
written as a linear combination of basis functions, we write

φ =
m∑

i=1

ηibi
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where m is the number of nodes, and {bi}mi=1 is the set of basis functions. We
attempt to minimize the energy over the set of coefficients {ηi}mi=1 using a con-
jugate descent algorithm developed by Hager * and Zhang. We are currently
implementing this minimization and refer the reader to future publications
for numerical results.
Acknowledgments: All figures appear courtesy of Valerie Bhat.
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